排列组合教案

时间:2024-08-20 09:55:19
排列组合教案

排列组合教案

作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。怎样写教案才更能起到其作用呢?以下是小编收集整理的排列组合教案,仅供参考,大家一起来看看吧。

排列组合教案1

一、教学目标

知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

能力目标:经历探索简单事物排列与组合规律的过程,培养学生有顺序地、全面思考问题的意识。

情感价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。

二、教学重难点

教学重点:经历探索简单事物排列与组合规律的过程。突破方法:通过创设情境,自主探究突破重点。教学难点:初步理解简单事物排列与组合的不同。突破方法:通过合作交流、探讨突破难点。

三、教学准备

课件、数字卡片、数位表格

四、教学方法与手段

1.从生活情景出发,结合学生感兴趣的动画故事为学生创设探究学习的情境。

2.采用观察法、操作法、探究法、讲授法、演示法等教学方法,通过让学生动手操作、独立思考和开展小组合作交流活动,完善自己的想法,努力构建学生独特的学习方式。

3.通过灵活、有趣的练习,如:握手、拍照等游戏,提高学生解决问题的能力,同时寻求解决问题的多种办法。

五、教学过程

(一)创设情境,激发兴趣

1.故事导入:灰太狼抓走了美羊羊,为了阻止喜洋洋来救,设置了门锁密码,要想闯关成功,要了解一个知识—搭配,揭示课题。

2.猜一猜第一关的密码是由

1、2两个数字组成的两位数,个位上的数字比十位上的数字大,这个密码可能是多少?

(二)动手操作,探索新知

1.过渡谈话,引出例1灰太狼增加了难度,在第二关设置了超级密码锁,密码是

1、2和3组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?”(课件出示例1)

2.尝试学习,自主探究

(1)引导理清题意:你都知道了什么

(2)指导学法:你有什么办法解决这个问题?

(3)动手操作:分发3张数字卡片,任意选取其中两张摆一摆,组成不同的两位数。鼓励学生动脑,找规律去摆,比一比谁摆的数多而不重复。

3.小组交流,展示成果

(1)小组交流:学生自主摆完后,小组交流讨论,探讨排列的方法。

(2)展示成果:指名上黑板展示。

4.交流摆法,总结规律

①交换位置:有顺序的从这3个数字中选择2个数字,组成两位数,再把位置交换,又组成另外一个两位数

②固定十位:先确定十位,再将个位变动。 ③固定个位:先确定个位,再将十位变动。 小结:以上这些办法很有规律,他们的好处:不重复,不遗漏,有顺序。

5.区分排列和组合

握手游戏:每两个人握一次手,3个人握几次手?

这些与顺序有关的问题,我们叫排列。与顺序无关的问题,我们叫组合。

(三)应用拓展,深化方法

1.任务一:比一比谁最快。

2.任务二:购物小超市,买一个拼音本,可以怎样付钱?

3.任务三:涂颜色(教材97页“做一做”)

学生独立思考,动手完成涂色。

4.任务四:搭配衣服。

5.组词:“读、好、书”一共有几种读法?

(四)总结延伸,畅谈感受

今天这节课有趣吗?同学们在数学广角里学到了什么?你有什么收获?以后在解决这类问题时应注意什么?

(五)课后作业

拍照游戏,3个人站一起拍照有几种站法?4个人呢?

六、板书设计

排列与组合1、2 —— 12 21

1、

2、3 ——12 21 23 32 13 31 12 13 21 23 31 32 21 31 12 32 13 23

排列组合教案2

解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。

引例1

现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动:

(1)选其中一人为负责人,共有多少种不同的选法。

(2)每组选一名组长,共有多少种不同的选法4

评述:本例指出正确应用两个计数原理。

引例2

(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?

(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?

评述:本例指出排列和组合的区别。

求解排列组合应用题的困难主要有三个因素的影响:

1、限制条件。2、背景变化。3、数学认知结构

排列组合应用题可以归结为四种类型:

第一个专题排队问题

重点解决:

1、如何确定元素和位置的关系

元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。

例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?

分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案(种),而有的同学则做出容易错误的答案(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了!

法一:元素分析法(以信为主)

第一步:投第一封信,有4种不同的投法;

第二步:接着投第二封信,亦有4种不同的投法;

第三步:最后投第三封信,仍然有4种不同的投法。

因此,投信的方法共有:(种)。

法二:位置分析法(以信箱为主)

第一类:四个信箱中的某一个信箱有3封信,有投信方法(种);

第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,有投信方法种。

第三类:四个信箱中的某三个信箱各有1封信,有投信方法(种)。

因此,投信的方法共有:64(种)

小结:以上两种方法的本质还是“信”与“信箱”的对应问题。

2、如何处理特殊条件——特殊条件优先考虑。

例:7位同学站成一排,按下列要求各有多少种不同的排法;

甲站某一固定位置;②甲站在中间,乙与甲相邻;③甲、乙相邻;④甲、乙两人不能相邻;⑤甲、乙、丙三人相邻;⑥甲、乙两人不站在排头和排尾;⑦甲、乙、丙三人中任何两人都不相邻;⑧甲、乙两 ……此处隐藏20148个字……引种试验,问共需安排多少个试验小区?

找一同学谈解答并说明怎样思考的的过程

第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=20xx.

第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.

二、 讲授新课

学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:

1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?

由学生设计好方案并回答.

(1)用加法原理设计方案.

首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.

(2)用乘法原理设计方案.

首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.

根据以上分析由学生(板演)写出所有种飞机票

再看一个实例.

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?

找学生谈自己对这个问题的想法.

事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.

首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;

其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.

根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).

根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)

第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.

由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.

根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).

请板演的学生谈谈怎样想的?

第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.

第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.

第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.

根据乘法原理,所以共有4×3×2=24种.

下面由教师提问,学生回答下列问题

(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?

都是从一些研究的对象之中取出某些研究的对象.

(2)取出的这些研究对象又做些什么?

实质上按着顺序排成一排,交换不同的位置就是不同的情况.

(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.

上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.

第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.

第三个问题呢?

从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.

给出排列定义

请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取(≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出个元素的一个排列.

下面由教师提问,学生回答下列问题

(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?

从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.

如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.

再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.

(2)还需要搞清楚一个问题,“一个排列”是不是一个数?

生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.

三、 课堂练习

大家思考,下面的排列问题怎样解?

有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)

分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.

解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.

第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.

第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.

第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:

所以,共有9种放法.

四、作业

课本:P232练习1,2,3,4,5,6,7.

数学教案-排列教学目标

《排列组合教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式